Publication
Luck is considered a crucial ingredient to achieve impact in all creative domains, despite their diversity. For instance, in science, the movie industry, music, and art, the occurrence of the highest impact work and a hot streak within a creative career are very difficult to predict. Are there domains that are more prone to luck than others? Here, we provide new insights on the role of randomness in impact in creative careers in two ways: (i) we systematically untangle luck and individual ability to generate impact in the movie, music, and book industries, and in science, and compare the luck factor between these fields; (ii) we show the surprising presence of randomness in the relationship between collaboration networks and timing of career hits. Taken together, our analysis suggests that luck consistently affects career impact across all considered sectors and improves our understanding in pinpointing the key elements in driving success.
Research in developmental psychology has studied careers of prominent artists and scientists for decades, advocating the importance of chance for the successful unfolding of careers in various creative domains [1–4]. In recent years, the availability of big databases on scientific publications [5] and artistic records, from books to movies [6–8], has made it possible to test a number of previously suggested hypotheses on a large scale. For instance, in previous work [9, 10], the analysis of thousands of creative careers has shown that the biggest hit of an individual occurs randomly within an individual’s career, a finding named equal-odds-rule [3] or random impact rule [9]. This rule explains the variability in the occurrence of creative individuals’ best hits. Yet, career hits are not only the results of luck but also of other individual and team properties [11–17]. While previous literature suggests that luck and individual ability are both necessary to excel in art and science [18–21], a quantification of the role of luck across different creative domains is still lacking. In which creative fields are individuals more likely to go from rags to riches and vice-versa? How is the network position of an individual related to the occurrence of a career hit?
In this work, we quantify luck fluctuations in impact across creative careers from film, music, literature, and science, and create a framework to compare the broad observed differences in impact [7, 22]. Do these random fluctuations have the same magnitude across careers? To address this question, we build on the mathematical framework known as the Q-model proposed in Ref. [9] to untangle the impact into two components, one encoding fluctuation that can be interpreted as luck, and another depending only on the individual. We show that this model is consistent with the classical test theory [23], also known as the true score theory [24], stating that the measured value of a certain measurable attribute consists of the sum of its true – error-free – score, and a stochastic error term. We find that the value of such randomness varies depending on the creative fields. By comparing this stochastic term to the typical impact score associated with each artist and scientist, we identify creative domains where the impact of single creative products are the most exposed to luck and fluctuate the most within individual careers. The pronounced role of randomness in achieving success in creative careers is confirmed by the unpredictable relation between the position of an individual in her collaboration network, captured by a number of network measures, and the timing of the hit of her career. To carry out these analyses, we rely on a large-scale data set covering more than four million individuals from c. 1902 up until 2017.
The outline of this paper is the following. First, we test the validity of the requirements of the Q-model proposed in Ref. [9]. Second, we use the Q-model impact decomposition method to factor impact in creative careers. Third, we apply the classical test theory to quantify the role of luck within each field and discuss the observed differences across fields. Finally, we construct the collaboration network within each domain and compare the time of the best hit of creative individuals to the time at which they reach their highest score in network centrality.
M. Janosov, F. Battiston, R. Sinatra, Success and luck in creative careers, EPJ Data Science 9 (2020) 9
Related
Signup
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 1 year | Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Analytics" category. |
cookielawinfo-checkbox-functional | 1 year | The GDPR Cookie Consent plugin sets the cookie to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 1 year | Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category. |
CookieLawInfoConsent | 1 year | CookieYes sets this cookie to record the default button state of the corresponding category and the status of CCPA. It works only in coordination with the primary cookie. |
PHPSESSID | session | This cookie is native to PHP applications. The cookie stores and identifies a user's unique session ID to manage user sessions on the website. The cookie is a session cookie and will be deleted when all the browser windows are closed. |
viewed_cookie_policy | 1 year | The GDPR Cookie Consent plugin sets the cookie to store whether or not the user has consented to use cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
mec_cart | 1 month | Provides functionality for our ticket shop |
VISITOR_INFO1_LIVE | 6 months | YouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface. |
VISITOR_PRIVACY_METADATA | 6 months | YouTube sets this cookie to store the user's cookie consent state for the current domain. |
YSC | session | Youtube sets this cookie to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt-remote-device-id | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt.innertube::nextId | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
Cookie | Duration | Description |
---|---|---|
_ga | 1 year | Google Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | 1 year | Google Analytics sets this cookie to store and count page views. |
_gat_gtag_UA_* | 1 min | Google Analytics sets this cookie to store a unique user ID. |
_gid | 1 day | Google Analytics sets this cookie to store information on how visitors use a website while also creating an analytics report of the website's performance. Some of the collected data includes the number of visitors, their source, and the pages they visit anonymously. |