(click to copy)

Publication

Relativistic gas: Lorentz-invariant distribution for the velocities

Here, we want to discuss, among others, the Jüttner probability density function (PDF). Both the velocity space and, consequently, the momentum space are not flat in special relativity. The velocity space corresponds to the Lobachevsky one, which has a negative curvature. This curvature induces a specific power for the Lorentz factor in the PDF, affecting the Jüttner normalization constant in one, two, and three dimensions.
Furthermore, Jüttner distribution, written in terms of a more convenient variable, the rapidity, presents a curvature change at the origin at sufficiently high energy, which does not agree with our computational dynamics simulations of a relativistic gas.
However, in one dimension, the rapidity satisfies a simple additivity law. This allows us to obtain, through the central limit theorem, a new, Lorentz-invariant, PDF whose curvature at the origin does not change for any energy value and which agrees with our computational dynamics simulations data.
Also, we perform extensive first-principle simulations of a one-dimensional relativistic gas constituted by light and heavy particles.

E. M. F. Curado, C. E. Cedeno, I. D. Soares, C. Tsallis, Relativistic gas: Lorentz-invariant distribution for the velocities, Chaos 32 (2022) 103110.

Constantino Tsallis, External Faculty at the Complexity Science Hub, celebrates his 80th birthday

Constantino Tsallis

0 Pages 0 Press 0 News 0 Events 0 Projects 0 Publications 0 Person 0 Visualisation 0 Art

Signup

CSH Newsletter

Choose your preference
   
Data Protection*