(click to copy)

Publication

Neural complexity through a nonextensive statistical–mechanical approach of human electroencephalograms

The brain is a complex system whose understanding enables potentially deeper approaches to mental phenomena. Dynamics of wide classes of complex systems have been satisfactorily described within q-statistics, a current generalization of Boltzmann-Gibbs (BG) statistics.

Here, we study human electroencephalograms of typical human adults (EEG), very specifically their inter-occurrence times across an arbitrarily chosen threshold of the signal (observed, for instance, at the midparietal location in scalp). The distributions of these inter-occurrence times differ from those usually emerging within BG statistical mechanics.

They are instead well approached within the q-statistical theory, based on non-additive entropies characterized by the index q. The present method points towards a suitable tool for quantitatively accessing brain complexity, thus potentially opening useful studies of the properties of both typical and altered brain physiology.

D. Marques Abramov, C. Tsallis, H. Santos Lima, Neural complexity through a nonextensive statistical–mechanical approach of human electroencephalograms, Scientific Reports 13 (2023) 10318.

Constantino Tsallis, External Faculty at the Complexity Science Hub, celebrates his 80th birthday

Constantino Tsallis

0 Pages 0 Press 0 News 0 Events 0 Projects 0 Publications 0 Person 0 Visualisation 0 Art

Signup

CSH Newsletter

Choose your preference
   
Data Protection*