Publication
In the domain of precision livestock farming, the integration of diverse data sources is crucial for advancing sustainability and evaluating the implications of farm management practices on cow health. Addressing the challenge of data heterogeneity and management diversity, we propose a key-feature-based clustering method.
This approach, merging knowledge-driven feature selection with unsupervised machine learning, enables the systematic investigation of management effects on cow health by forming distinct clusters for analysis.
Utilizing data from 3,284 Austrian farms, including 80 features related to feeding, milking, housing, and technology systems, and health information for 56,000 cows, we show how this methodology can be applied to study the impact of technological systems on cow health resulting from the incidence of veterinary diagnoses.
Our analysis successfully identified 14 distinct clusters, further divided into four main groups based on their level of technological integration in farm management: “SMART,” “TRADITIONAL,” “AMS (automatic milking system),” and “SENSOR.”
We found that “SMART” farms, which integrate both AMS and sensor systems, exhibited a minimally higher disease risk for milk fever (OR 1.09) but lower risks for fertility disorders and udder diseases, indicating a general trend toward reduced disease risks. In contrast, farms with “TRADITIONAL” management, without AMS and sensor systems, showed the lowest risk for milk fever but the highest risk of udder disease (OR 1.12) and a minimally higher incidence of fertility disorders (OR 1.07).
Furthermore, across all four groups, we observed that organic farming practices were associated with a reduced incidence of milk fever, udder issues, and particularly fertility diagnoses. However, the size of the effect varied by cluster, highlighting the complex and multifactorial nature of the relationship between farm management practices and disease risk.
The study highlights the effectiveness of the key-feature-based clustering approach for high-dimensional data analyses aimed at comparing different management practices and exploring their complex relationships. The adaptable analytical framework of this approach makes it a promising tool for planning optimizing sustainable and efficient animal husbandry practices.
C. Matzhold, K. Schodl, P. Klimek, F. Steininger, C. Egger-Danner, A key-feature-based clustering approach to assess the impact of technology integration on cow health in Austrian dairy farms, Frontiers in Animal Science 5() (2024) 1421299.
Signup
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 1 year | Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Analytics" category. |
cookielawinfo-checkbox-functional | 1 year | The GDPR Cookie Consent plugin sets the cookie to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 1 year | Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category. |
CookieLawInfoConsent | 1 year | CookieYes sets this cookie to record the default button state of the corresponding category and the status of CCPA. It works only in coordination with the primary cookie. |
PHPSESSID | session | This cookie is native to PHP applications. The cookie stores and identifies a user's unique session ID to manage user sessions on the website. The cookie is a session cookie and will be deleted when all the browser windows are closed. |
viewed_cookie_policy | 1 year | The GDPR Cookie Consent plugin sets the cookie to store whether or not the user has consented to use cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
mec_cart | 1 month | Provides functionality for our ticket shop |
VISITOR_INFO1_LIVE | 6 months | YouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface. |
VISITOR_PRIVACY_METADATA | 6 months | YouTube sets this cookie to store the user's cookie consent state for the current domain. |
YSC | session | Youtube sets this cookie to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt-remote-device-id | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt.innertube::nextId | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
Cookie | Duration | Description |
---|---|---|
_ga | 1 year | Google Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | 1 year | Google Analytics sets this cookie to store and count page views. |
_gat_gtag_UA_* | 1 min | Google Analytics sets this cookie to store a unique user ID. |
_gid | 1 day | Google Analytics sets this cookie to store information on how visitors use a website while also creating an analytics report of the website's performance. Some of the collected data includes the number of visitors, their source, and the pages they visit anonymously. |